segunda-feira, 20 de junho de 2011

Tocoferol

Tocoferol

Origem: Wikipédia, a enciclopédia livre.
(Redirecionado de Vitamina E)
Searchtool.svg
Esta página ou secção foi marcada para revisão, devido a inconsistências e/ou dados de confiabilidade duvidosa. Se tem algum conhecimento sobre o tema, por favor, verifique e melhore a consistência e o rigor deste artigo. Considere utilizar {{revisão-sobre}} para associar este artigo com um WikiProjeto.
Ambox rewrite.svg
Esta página precisa ser reciclada de acordo com o livro de estilo.
Sinta-se livre para editá-la para que esta possa atingir um nível de qualidade superior.
Editor: considere colocar o mês e o ano da marcação. Isso pode ser feito automaticamente, substituindo esta predefinição por {{subst:rec}}

O tocoferol é uma vitamina lipossolúvel da família da vitamina E. Ela previne o dano celular ao inibir a peroxidação lipídica, a formação de radicais livres e doenças cardiovasculares. Melhora a circulação sanguínea, regenera tecidos e é útil no tratamento de seios fibrocísticos, tensão pré-menstrual e claudicação intermitente. É possível obter dos alimentos as doses de vitamina E que combatem doenças cardíacas e o câncer, além de aumentar a resistência imunológica, segundo consta uma pesquisa feita em 2000 pelo Instituto de Medicina do EUA(IOM) . O IOM relatou que a maioria dos americanos consegue o suprimento necessário da vitamina E pela alimentação diária. Além de alertar sobre dietas que restrinjam o consumo de gorduras, tendo essas pessoas que complementarem com suplementos(lembrando que o Tocoferol é uma vitamina lipossolúvel, portanto cumulativo no organismo. Podendo gerar a hipervitaminose).
Pode aliviar situações de stress, particularmente as geradas pelo oxigênio. É antioxidante, atua através do bloqueio das moléculas instáveis de oxigênio singlete(Radicais Livres).
A vitamina E previne a oxidação espontânea dos elementos polinsaturados e protege, em termos funcionais, estruturas celulares importantes dos tecidos, supostamente através da inibição da peroxidação lipídica.
Na falta desta vitamina na alimentação pode desenvolver-se a avitaminose designada por Esterilidade.
Recentemente foi constatado que uma dieta rica em vitamina E pode proteger contra o mal de Parkinson, de acordo com estudo da Universidade de Queen, no Canadá, publicado na revista Lancet Neurology.
O estudo, feito com base em oito trabalhos científicos anteriores publicados entre 1966 e 2005 e que investigaram os efeitos das vitaminas E e C e do nutriente beta-caroteno, concluiu que pessoas que consomem verduras, nozes e óleos vegetais, têm probabilidade muito menor de desenvolver o mal de Parkinson.
Constatou-se que o mesmo efeito não foi verificado em relação à vitamina C e ao beta-caroteno.
'''Texto a negrito==Vitamina E contra o câncer== A ingestão de vitamina E pode ajudar a prevenir o câncer de próstata, segundo uma pesquisa do Instituto Nacional do Câncer dos Estados Unidos.
Os cientistas descobriram que os homens com altos níveis de alfa tocoferol, a forma natural da vitamina E, tinham possibilidades 53% menores de desenvolver câncer de próstata. O estudo percebeu ainda que os efeitos da gama tocoferol, outro tipo de vitamina E, também diminuiria os riscos de contrair a doença, mas com menor eficácia, 39%.
Partindo deste trabalho, os estudiosos verificaram que o mais indicado é a ingestão da vitamina diretamente de alimentos que a contém. Entre as melhores fontes naturais de vitamina E estão: sementes de girassol, espinafre, amêndoas e pimentões.

Sinais de falta

Ocorre o maior risco de doenças coronárias, derrames, cataratas e alguns tipos de cancro. Disfunção neurológica que afeta o sistema nervoso, os olhos e os músculos. Podendo causar também anemia (questionável) e esterilidade (em roedores apenas)

Vitamina D

Vitamina D

Origem: Wikipédia, a enciclopédia livre.
Text document with red question mark.svg
Este artigo ou secção contém uma lista de fontes ou uma única fonte no fim do texto, mas estas não são citadas no corpo do artigo. (desde maio de 2009)
Por favor, melhore este artigo introduzindo notas de rodapé citando as fontes, inserindo-as no corpo do texto quando necessário.

A vitamina D (ou calciferol) é uma vitamina que promove a absorção de cálcio (após a exposição à luz solar), essencial para o desenvolvimento normal dos ossos e dentes, atua também, como recentemente descoberto, no sistema imune, no coração, no cérebro e na secreção de insulina pelo pâncreas. É uma vitamina lipossolúvel obtida a partir do colesterol como precursor metabólico através da luz do sol, e de fontes dietéticas. Funcionalmente, a vitamina D atua como um hormônio que mantém as concentrações de cálcio e fósforo no sangue através do aumento ou diminuição da absorção desses minerais no intestino delgado. A vitamina D também regula o metabolismo ósseo e a deposição de cálcio nos ossos.
O nome da vitamina foi criada pelo bioquímico polonês Casimir Funk em 1912, baseado na palavra em latim vita (vida) e no sufixo -amina. Foi usado inicialmente para descrever estas substâncias do grupo funcional amina, pois naquele tempo pensava-se que todas as vitaminas eram aminas. Apesar do erro, o nome manteve-se.
A vitamina D também é muito importante para crianças, gestantes e mães que amamentam, por favorecer o crescimento e permitir a fixação de cálcio nos ossos e dentes.
Além da importância na manutenção dos níveis do cálcio no sangue e na saúde dos ossos, a vitamina D tem um papel muito importante na maioria das funções metabólicas e também nas funções musculares, cardíacas e neurológicas. A deficiência da vitamina D pode precipitar e aumentar a osteoporose em adultos e causar raquitismo, uma avitaminose, em crianças.

Índice


Como fornecer vitamina D ao organismo deficiente

Estrutura química do colecalciferol.
Estrutura química do ergocalciferol.
A exposição ao sol desencadeia a produção de vitamina D na pele. Alguns alimentos também representam uma fonte desta vitamina. O óleo de fígado de bacalhau foi utilizado também como suplemento alimentar para evitar o raquitismo, sendo hoje em dia facilmente substituível por medicamentos contendo vitamina D, mas a vitamina D da luz solar continua a ser preferível.
A vitamina D pode ser encontrada sob duas formas: o ergocalciferol (vitamina D2) e o colecalciferol (vitamina D3). O ergocalciferol é produzido comercialmente a partir do esteróide ergosterol encontrado em vegetais e leveduras, através de irradiação com luz ultravioleta. É utilizado como suplemento alimentar para enriquecimento de alimentos como o leite com vitamina D. O colecalciferol é transformado pela ação dos raios solares a partir da provitamina D3 (7-deidrocolesterol) encontrada na pele humana. Ambas as formas D2 e D3 são hidroxiladas no fígado e rins a 25-hidroxicalciferol e subsequentemente à forma biologicamente activa, o 1,25-di-hidroxicalciferol (calcitriol), que actua como uma hormona na regulação da absorção de cálcio no intestino e regulação dos níveis de cálcio em tecidos ósseos e renais.
A vitamina D é fundamental para a homeostase do cálcio no organismo. Como outras vitaminas, deve ser consumida em quantidades adequadas, evitando faltas e excessos.
A quantidade de vitamina D que um adulto precisa varia, de acordo com a idade, de 5 mg a 10 mg, chegando a 15 mg em idosos com mais de 70 anos.[carece de fontes]Poucos alimentos são considerados fontes de vitamina D, mas entre eles encontram-se a gema de ovo, fígado, manteiga e alguns tipos de peixes como a cavala, o salmão e o arenque. Embora em menor quantidade, a sardinha e o atum também têm vitamina D.
Nos Estados Unidos da América é obrigatório que o leite seja reforçado com vitamina D. Outros alimentos e bebidas também podem ser reforçados com vitamina D nos EUA, inclusive cereais matinais prontos para comer, produtos lácteos, bebidas à base de soja e sucos, porém são insuficientes por eles só.

Distúrbios

No fígado, a vitamina D é convertida em uma forma que pode ser transportada pelo sangue. Nos rins, essa forma é modificada para produzir hormônios derivados da vitamina D, cuja função principal é aumentar a absorção de cálcio no intestino e facilitar a formação normal dos ossos. Na deficiência de vitamina D, as concentrações de cálcio e de fosfato no sangue diminuem, provocando uma doença óssea porque não existe uma quantidade suficiente de cálcio disponível para manter os ossos saudáveis.
Esse distúrbio é denominado raquitismo nas crianças, uma doença que se manifesta com atraso no fechamento da moleira nos recém-nascidos (importante na calota craniana), desmineralização óssea, as pernas tortas e outros sinais relacionados com estrutura óssea. É denominado osteomalácia nos adultos, onde se desenvolve ossos fracos e moles.
A deficiência de vitamina D é causada sobretudo pela falta de exposição à luz solar e não tanto com vitamina D na dieta, como demonstram novos estudos independentes. Essa deficiência pode ocorrer em indivíduos idosos porque a pele produz menos vitamina D, mesmo quando exposta à luz solar, mas também pelas erradas recomendações dos medicos em aconselhar suplementos de vitamina D ao invés da exposição solar, ou pelo excesso de protetor solar.
A deficiência de vitamina D durante a gravidez pode causar osteomalácia na mulher e raquitismo no feto.
A vitamina D tem poucas hipóteses de se tornar tóxica no corpo, pois quando a pele não transforma o colesterol presente em vitamina D inativa (só e ativada no figado e rins), os raios solares naturalmente destroem a vitamina.

Ligações externas

Referências

Portal A Wikipédia possui o portal:
Portal da Bioquímica
  • http://alavrado.blogspot.com/ A nonprofit, tax-exempt 501(c)(e) educational corporation in the State of California.
  • BIESEK, Simone et al. Estratégias de Nutrição e Suplementação no Esporte. São Paulo: Manole, 2005.
  • FOSS, M.L.; KETEYIAN, S.J. Bases Fisiológicas do Exercício e do Esporte. 6ª ed. Rio de Janeiro: Guanabara Koogan, 2000.
  • MCARDLE, William D. et al. Fisiologia do Exercício – Energia, Nutrição e Desempenho Humano. Rio de Janeiro: Guanabara Koogan, 1998.
  • WILMORE, Jack H.; COSTILL, David L. Fisiologia do Esporte e do Exercício. São Paulo: Manole, 2001
  • NELSON, David L.; COX, Michael M., Lehninger Principles of Biochemistry, 4ª edição, W. H. Freeman, 2005, ISBN 978-0716743392

Vitamina

Vitamina

Origem: Wikipédia, a enciclopédia livre.
(Redirecionado de Vitaminas)


As vitaminas compostos orgânicos, presentes nos alimentos, essenciais para o funcionamento normal do metabolismo, e em caso de falta pode levar a doenças. Não podem ser digeridas pelo ser humano, exceto em quantidades não suficientes. A disfunção de vitaminas no corpo é chamada de hipovitaminose ou avitaminose. O excesso pode trazer problemas, no caso das vitaminas lipossolúveis, de mais difícil eliminação, é chamado de hipervitaminose. Atualmente é reconhecido que os seres humanos necessitam de 13 vitaminas diferentes ,sendo que o nosso corpo só consegue produzir vitamina D.
O nome vitamina foi criado pelo bioquímico polonês Casimir Fuks em 1912, baseado na palavra latina vita (vida) e no sufixo -amina (aminas vitais ou aminas da vida). Foi usado inicialmente para descrever estas substâncias do grupo funcional amina, pois naquele tempo pensava-se que todas as vitaminas eram aminas. Apesar do erro, o nome se manteve. As vitaminas podem ser classificadas em dois grupos de acordo com sua solubilidade. Quando solúveis em gorduras, são agrupadas como vitaminas lipossolúveis e sua absorção é feita junto à da gordura, podendo acumular-se no organismo alcançando níveis tóxicos. São as vitaminas A, D, E e K. Já as vitaminas solúveis em água são chamadas de hidrossolúveis e consistem nas vitaminas presentes no complexo B e a vitamina C. Essas não são acumuladas em altas doses no organismo, sendo eliminada pela urina. Por isso se necessita de uma ingestão quase diária para a reposição dessas vitaminas. Algumas vitaminas do Complexo B podem ser encontradas como co-fatores de enzimas, desempenhando a função de coenzimas.
Apesar de precisarem ser consumidas em pequenas quantidades, se houver deficiência de algumas vitaminas, estas podem provocar doenças específicas, como: beribéri, escorbuto, raquitismo e xeroftalmia.
São encontradas em derivados do leite, folhas verdes, frutas e óleos.

Índice


Classificação das vitaminas

As vitaminas atualmente consideradas essenciais aos humanos são as seguintes:

Hidrossolúveis
As vitaminas hidrossolúveis são absorvidas pelo intestino e transportadas pelo sistema circulatório para os tecidos em que serão utilizadas. Como o organismo não tem capacidade para as armazenar, o excesso desse tipo de vitaminas é secretado (principalmente na urina). Deste modo, as vitaminas hidrossolúveis necessitam de reposição diária. Sendo que a vitamina A é boa para a pele, e sua ação é diretamente ligada a catalização de quatro hemoglobinas do sangue para auxiliar na ventilação do corpo.

Lipossolúveis
Este tipo de vitaminas necessita do auxílio de gorduras para serem absorvidas. . As vitaminas lipossolúveis mais importantes são: A, D, E, K. As vitaminas A e D são armazenadas principalmente no fígado, a vitamina E nos tecidos gordurosos e nos órgãos reprodutores. O organismo consegue armazenar pouca quantidade de vitamina K. Ingeridas em excesso, algumas vitaminas lipossolúveis podem alcançar níveis tóxicos no interior do organismo.
Crystal Clear app xmag.pngVeja também: Vitamina lipossolúvel.

Vitaminas com letra

Antigamente, não era possível denominar cientificamente uma vitamina. Sendo assim, para não dar nomes científicos a essas substâncias que, quando fosse possível estudá-las, fossem considerados errôneos, decidiu-se dar a cada vitamina uma letra. Chegaram a ir de A a U (pulando o jota). Algumas, todavia, mudaram de nome, como a Vitamina B, que virou um complexo vitamínico, ou a vitamina M (B9).
A actual lista é:
  1. Tiamina
  2. Riboflavina
  3. Nicotinamida/Niacina
  4. Adenina
  5. Ácido pantotênico
  6. Piridoxina
  7. Biotina
  8. Colina
  9. Ácido fólico

10.
11.
12. Cobalamina
13. Ácido orótico
15. Ácido pangâmico
17. Amigdalina
x. Ácido para-aminobenzóico

Dose Diária Recomendada (DDR)

Segundo o Food and Drug Administration (FDA)[1] Riboflavina (B2): É um pigmento fluorescente amarelo esverdeado que forma cristais de agulhas amarelo amarronzadas. É solúvel em água relativamente instável ao calor, mas facilmente destruída pela luz e irradiação. Funções: Disponibiliza a energia dos alimentos, crescimento em crianças, restauração e manutenção dos tecidos. Carência: Queilose (rachaduras nos cantos da boca), glossite (edema e vermelhidão da língua), visão turva, fotofobia, descamação da pele e dermatite seborréica. Excesso: Não existe toxicidade conhecida. Fontes alimentares: Iogurte, leite, queijo, fígado, rim, coração, gérmen de trigo, cereais matinais vitaminados, grãos, peixes oleosos, levedura, ovos, siri, amêndoa, semente de abóbora e vegetais. Necessidades diárias: 1,3mg para homens e 1,1mg para mulheres.

Niacina (B3): A niacina (ácido nicotínico) é convertida para nicotinamida, que é solúvel em água, estável em ácido e ao calor. Funções: Necessário para a produção de energia nas células. Está envolvida nas ações das enzimas, incluindo o metabolismo dos ácidos graxos, respiração dos tecidos e para expelir toxinas. Carência: Fraqueza, pelagra, anorexia, indigestão, erupções na pele, confusão mental, apatia, desorientação e neurite. Excesso: Não existe toxicidade conhecida. Fontes alimentares: Carnes magras, fígado, peixes oleosos, amendoim, cereais matinais vitaminados, leite, queijo cogumelo, ervilha, vegetais folhosos verdes, ovos, alcachofra, batata e aspargos. Necessidades diárias: 16mg para homens e 14 mg para mulheres.
Devido ao importante papel no metabolismo como um todo, é necessário que recebamos uma gota mínima de vitaminas diariamente. De acordo com o FDA, os valores diários recomendados para uma pessoa adulta são:

Polivitamínicos e suplementos de vitaminas

Especialistas em nutrição e medicina concluiram que a suplementação de vitaminas e sais minerais em quantidades balanceadas pode evitar carências nutricionais e ainda mais: prevenir doenças crônicas como o câncer.
O segredo está na utilização de doses balanceadas para proteger a saúde.[2].

Ligações externas

Referências

  1. Dose Diárias Recomendadas de Vitaminas. Traduzido por Dr. José Hamilton Vargas no site Saúde do Futuro.
  2. Vitaminas e polivitamínicos: como proteger sua saúde.

Referências Bibliográficas

  • Stedman dicionário médico - 23ª edição - Rio de Janeiro; Guanabara Koogan, 2007, ISBN 85-226-0226-3.

Aminoácido

Aminoácido

Origem: Wikipédia, a enciclopédia livre.
NoFonti.svg
Este artigo ou secção cita fontes fiáveis e independentes, mas elas não cobrem todo o texto (desde Janeiro de 2011).
Por favor, melhore este artigo providenciando mais fontes fiáveis e independentes, inserindo-as em notas de rodapé ou no corpo do texto, nos locais indicados.
Encontre fontes: Googlenotícias, livros, acadêmicoScirus. Veja como referenciar e citar as fontes.

Estrutura geral de um Aminoácido.
Portal A Wikipédia possui o portal:
Portal da Bioquímica
Um aminoácido é uma molécula orgânica que contém um grupo amina e um grupo carboxila.[1] Alguns aminoácidos também podem conter enxofre.
A forma mais importante dos aminoácidos, os alfa-aminoácidos, que formam as proteínas, tem, geralmente, como estrutura um carbono central (carbono alfa, quase sempre quiral) ao qual se ligam quatro grupos: o grupo amina (NH2), grupo carboxílico (COOH), hidrogênio e um substituinte característico de cada aminoácido.[2]
Os aminoácidos se unem através de ligações peptídicas, formando os peptídeos e as proteínas.[3] Para que as células possam produzir suas proteínas, elas precisam de aminoácidos, que podem ser obtidos a partir da alimentação ou serem fabricados pelo próprio organismo.
Os aminoácidos podem ser classificados nutricionalmente, quanto ao radical e quanto ao seu destino.

Índice

[esconder]

Classificação nutricional

Aminoácidos não-essenciais

Aminoácidos não-essenciais ou dispensáveis são aqueles que o corpo humano pode sintetizar.

Aminoácidos essenciais


Os aminoácidos essenciais são aqueles que não podem ser produzidos pelo corpo humano. Dessa forma, são somente adquiridos pela ingestão de alimentos, vegetais ou animais. São eles: fenilalanina, isoleucina, leucina, lisina, metionina, treonina, triptofano, histidina e valina.

[editar] Aminoácidos essenciais apenas em determinadas situações fisiológicas

Aminoácidos condicionalmente essenciais são os aminoácidos que devido a determinadas patologias, não podem ser sintetizados pelo corpo humano. Assim, é necessário obter estes aminoácidos através da alimentação, de forma a satisfazer as necessidades metabólicas do organismo. São eles: arginina, cisteína, glicina, glutamina, prolina, tirosina.

Classificação quanto ao substituinte

A classificação quanto ao substituinte pode ser feita em:
Aminoácidos apolares: Apresentam como substituintes hidrocarbonetos apolares ou hidrocarbonetos modificados, exceto a glicina. São substituintes hidrofóbicos. Alanina: CH3- CH (NH2) - COOH Leucina: CH3(CH2)3-CH2-CH (NH2)- COOH Valina: CH3-CH(CH3)-CH (NH2)- COOH Isoleucina: CH3-CH2-CH (CH3)-CH (NH2)- COOH Prolina:-CH2-CH2-CH2- ligando o grupo amino ao carbono alfa Fenilalanina: C6H5-CH2-CH (NH2)- COOH Triptofano: R aromático- CH (NH2)- COOH Metionina: CH3-S-CH2-CH2- CH (NH2)- COOH
Aminoácidos polares neutros: Apresentam substituintes que tendem a formar ligação de hidrogênio. Glicina: H- CH (NH2) - COOH Serina: OH-CH2- CH (NH2)- COOH Treonina: OH-CH (CH3)- CH (NH2)- COOH Cisteina: SH-CH2- CH (NH2)- COOH Tirosina: OH-C6H4-CH2- CH (NH2)- COOH Asparagina: NH2-CO-CH2- CH (NH2)- COOH Glutamina: NH2-CO-CH2-CH2- CH (NH2)- COOH
Aminoácidos ácidos: Apresentam substituintes com grupo carboxílico.São hidrófilos. Ácido aspártico: HCOO-CH2- CH (NH2)- COOH Ácido glutâmico: HCOO-CH2-CH2- CH (NH2)- COOH
Aminoácidos básicos: Apresentam substituintes com o grupo amino. São hidrófilos Arginina: {{{1}}}- CH (NH2)- COOH Lisina: NH3-CH2-CH2-CH2-CH2- CH (NH3)- COOH Histidina: H-(C3H2N2)-CH2- CH (NH2)- COOH

Aminoácidos alfa

Fórmula geral

São aqueles que apresentam fórmula geral: R - CH (NH2)- COOH na qual R é uma cadeia orgânica. No aminoácido glicina o substituinte é o hidrogênio, O carbono ligado ao substituinte R é denominado carbono 2 ou alfa.

Simbologia e nomenclatura

Na nomenclatura dos aminoácidos, a numeração dos carbonos da cadeia principal é iniciada a partir do carbono da carboxila.
Nome Símbolo Abreviação Nomenclatura
Glicina ou Glicocola Gly, Gli G Ácido 2-aminoacético ou Ácido 2-amino-etanóico
Alanina Ala A Ácido 2-aminopropiônico ou Ácido 2-amino-propanóico
Leucina Leu L Ácido 2-aminoisocapróico ou Ácido 2-amino-4-metil-pentanóico
Valina Val V Ácido 2-aminovalérico ou Ácido 2-amino-3-metil-butanóico
Isoleucina Ile I Ácido 2-amino-3-metil-n-valérico ou ácido 2-amino-3-metil-pentanóico
Prolina Pro P Ácido pirrolidino-2-carboxílíco
Fenilalanina Phe ou Fen F Ácido 2-amino-3-fenil-propiônico ou Ácido 2-amino-3-fenil-propanóico
Serina Ser S Ácido 2-amino-3-hidroxi-propiônico ou Ácido 2-amino-3-hidroxi-propanóico
Treonina Thr, The T Ácido 2-amino-3-hidroxi-n-butírico
Cisteina Cys, Cis C Ácido 2-bis-(2-amino-propiônico)-3-dissulfeto ou Ácido 3-tiol-2-amino-propanóico
Tirosina Tyr, Tir Y Ácido 2-amino-3-(p-hidroxifenil)propiônico ou paraidroxifenilalanina
Asparagina Asn N Ácido 2-aminossuccionâmico
Glutamina Gln Q Ácido 2-aminoglutarâmico
Aspartato ou Ácido aspártico Asp D Ácido 2-aminossuccínico ou Ácido 2-amino-butanodióico
Glutamato ou Ácido glutâmico Glu E Ácido 2-aminoglutárico
Arginina Arg R Ácido 2-amino-4-guanidina-n-valérico
Lisina Lys, Lis K Ácido 2,6-diaminocapróico ou Ácido 2, 6-diaminoexanóico
Histidina His H Ácido 2-amino-3-imidazolpropiônico
Triptofano Trp, Tri W Ácido 2-amino-3-indolpropiônico
Metionina Met M Ácido 2-amino-3-metiltio-n-butírico
Observação: A numeração dos carbonos da cadeia principal pode ser substituída por letras gregas a partir do carbono 2 (α)
Exemplo: Ácido 2-amino-3-metil-pentanoico = Ácido α-amino-β-metil-pentanóico.

Estrutura

Estrutura tridimensional

Aminoácidos apolares

Há um grupo de aminoácidos com cadeia laterais apolares. Desse grupo fazem parte a alanina, a glicina, a valina, a leucina, a isoleucina, a prolina, a fenilalanina, o triptofano e a metionina. Em vários elementos do grupo - isto é, a alanina, a valina, a leucina, e a isoleucina - a cadeia lateral é um grupo hidrocarboneto alifático. A prolina tem uma estrutura cíclica alifática e o nitrogênio está ligado a dois átomos de carbono. Na terminologia de química orgânica, o grupo amina da prolina é uma amina secundária. Em contraste os grupos aminade todos os outros aminoácidos são aminas primárias. Na fenilalanina, o grupo hidrocarboneto é aromático(contém um grupo cíclico semelhante ao anel de benzeno) em vez de alinfático. No triptofano, a cadeia lateral contém um átomo de nitrogênio adicionado ao grupo hidrocarboneto alifático.

Aminoácidos polares neutros

Este grupo de aminoácido tem cadeias laterais polares eletricamente neutras (sem cargas) em pH neutro. Este grupo inclui a serina, a treonina, a tirosina, a cisteína, a glutamina, e a asparagina. Na serina, e na treonina, o grupo polar é uma hidroxila (-OH) ligadas a grupos hidrocarboneto alifáticos. O grupo hidroxila na tirosina é ligado a um grupo hidrocarboneto aromático, o qual eventualmente perde um próton em pHs mais altos.

Aminoácidos polares ácidos

Dois aminoácidos, o ácido glutâmico e o ácido aspártico, possuem grupos carboxila em suas cadeias laterais, além daquele presente em todos os aminoácidos.

Aminoácidos polares básicos

Há três aminoácidos (a histidina, a Lisina e a Arginina) que possuem cadeias laterais básicas, e em todos e eles cadeia lateral é carregada positivamente em pH neutro ou perto dele.

Classificação quanto ao destino

Essa classificação é dada em relação ao destino tomado pelo aminoácido quando o grupo amina é excretado do corpo na forma de uréia(mamíferos), amônia(peixes) e ácido úrico(Aves e répteis).

Destino cetogênico

Quando o álcool restante da quebra dos aminoácidos vai para qualquer fase do Ciclo de Krebs na forma de Acetil coenzima A ou outra substância.
Os aminoácidos que são degradados a acetil-coa ou acetoacetil-coa são chamados de cetogênicos porque dão origem a corpos cetônicos. A sua capacidade de formação de corpos cetônicos fica mais evidente quando o paciente tem a diabetes melitus, o que vai fazer com que o fígado produza grande quantidade dos mesmos.

Destino glicogênico

Quando o álcool restante da quebra dos aminoácidos vai para a via glicolítica.
Os aminoácidos que são degradados a piruvato, a-cetoglutarato, succinil-coa, fumarato ou oxaloacetato são denominados glicogênicos. A partir desses aminoácidos é possível fazer a síntese de glicose, porque esses intermediários e o piruvato podem ser convertidos em fosfoenolpiruvato e depois em glicose ou glicogênio.
Do conjunto básico dos 20 aminoácidos, os únicos que são exclusivamente cetogênicos são a leucina e a lisina. A fenilalanina, triptofano, isoleucina e tirosina são tanto cetogênicos quanto glicogênicos. E os aminoácidos restantes (14) são estritamente glicogênicos (lembrando que o corpo pode gerar Acetil-Coa a partir da glicose)..

Ocorrência

Os aminoácidos alfa ( cerca de vinte ) são constituintes de todas as proteínas e peptídeos, portanto, de toda a matéria viva.
Todos os aminoácidos constituintes das proteínas são alfa aminoácidos. As proteínas são alfa-polímeros formados por alfa-aminoácidos. Alguns autores relatam que para formar uma proteína é necessário uma cadeia com mais de 50 aminoácidos. Uma cadeia formada por dois alfa aminoácidos é um dipeptídeo, até 50 alfa-aminoácido um polipeptídeo.

Fixação de nitrogênio
A fonte primária de nitrogênio para os seres vivos é o nitrogênio atmosférico, que tem que ser convertido a uma forma metabolizável como a amônia. Mas só algumas bactérias conseguem converter nitrogênio em amônia. A conversão de nitrogênio a amônia, chamada de fixação de nitrogênio, é feita por um sistema enzimatico complexo, denominado nitrogenase, que utiliza NADPH como doador de elétrons e só é processado com um consumo muito grande de ATP.

Isomeria

Animation of two mirror image molecules rotating around a central axis.
Os dois enantiômeros da Alanina, D-Alanina e L-Alanina.
Com exceção única da glicina, todos os aminoácidos obtidos pela hidrólise de proteínas em condições suficientemente suaves apresentam atividade óptica. Esses aminoácidos apresentam 4 grupos diferentes ligados ao carbono central, ou seja, esse carbono é assimétrico, assim esse carbono é chamado centro quiral.
A existência de um centro quiral permite que esses aminoácidos formem esteroisômeros devido aos diferentes arranjos espaciais ópticamente ativos. Dentre os esteroisômeros existem aqueles que se apresentam como imagens especulares um do outro sem sobreposição, a estes chamamos enantiômeros.
Os enantiômeros podem ser D ou L, sendo essa classificação referente à semelhança com a estrutura do aminoácido D-gliceraldeído e do L-gliceraldeído, respectivamente. Somente os L-aminoácidos são constituintes das proteínas.

Síntese

Todos os aminoácidos são derivados de intermediários da glicólise, do ciclo do ácido cítrico ou das via das pentoses-fosfato. O nitrogênio entra nessas vias através do glutamato. Há uma grande variação no nível de complexidade das vias, sendo que alguns aminoácidos estão a apenas alguns passos enzimáticos dos seus precursores e em outros as vias são complexas, como no caso dos aminoácidos aromáticos.
Os aminoácidos podem ser essenciais ou não-essenciais.
  • Os aminoácidos não-essenciais são mais simples de serem sintetizados e o são produzidos pelos próprios mamíferos. Por isso eles não necessariamente precisam estar na alimentação.
  • Já os aminoácidos essenciais precisam estar presentes na dieta, já que não são sintetizados pelos mamíferos.
As biossintéticas de aminoácidos são agrupadas de acordo com a família dos precursores de um deles. Existe a adição a esses precursores do PRPP (fosforribosil pirofosfato).
As principais famílias são:
  1. A do alfa-cetoglutarato que origina o glutamato, a glutamina, a prolina e a arginina.
  2. A do 3-fosfoglicerato de onde são derivados a serina, a glicina e a cisteína.
  3. O oxaloacetato dá origem ao aspartato, que vai originar a asparagina, a metionina, a treonina e a lisina.
  4. O piruvato dará origem a alanina, a valina, a leucina e a isoleucina.

Obtenção

Hidrólise de proteínas
As proteínas são moléculas formadas por até milhares de aminoácidos unidos por ligações peptídicas (que ocorre entre a carboxila de um aminoácido e o grupo amino de outro). Essas ligações podem ser quebradas por hidrólise produzindo uma mistura complexa de aminoácidos.
Síntese
Síntese de Hoffmann, síntese de Strecker e síntese de Gabriel são métodos sintéticos para a obtenção de alfa-aminoácidos.
Two amino acids are shown next to each other. One loses a hydrogen and oxygen from its carboxyl group (COOH) and the other loses a hydrogen from its amino group (NH2). This reaction produces a molecule of water (H2O) and two amino acids joined by a peptide bond (-CO-NH-). The two joined amino acids are called a dipeptide.
A condensação de dois aminoácidos para formar uma ligação peptídica

Ionização

Os aminoácidos são substâncias anfóteras, ou seja, pode atuar como ácidos ou como bases.
Existem 2 grupos ácidos fortes ionizados, um –COOH e um –NH3+ . Em solução essas duas formas estão em equilíbrio protônico. R-COOH e R-NH3+, representam a forma protonada ou ácida, parceiras nesse equilíbrio. E as formas R-COO- e R-NH2 são as bases conjugadas.
Assim, dependendo do meio, os aminoácidos podem atuar como ácidos (protonado, podendo doar prótons), neutros (a forma protonada e a forma receptora de prótons em equilíbrio) e base (base conjugada do ácido correspondente, ou seja, perdeu prótons, e agora é receptora deles).
Os aminoácidos reagem com o ácido nitroso produzindo nitrogênio e um hidroxi-acido. A aplicação desta reação é a determinação da dosagem de aminoácidos,no sangue, medindo-se o volume de nitrogênio produzido (método de Slyke).
Na putrefação dos organismos, certas enzimas reduzem os aminoácidos em aminas como a putrescina e a cadaverina.

Propriedades

Organolépticas: Incolores. A maioria de sabor adocicado.
Físicas: Sólidos com solubilidade variável em água. Apresentam atividade óptica por apresentarem carbono assimétrico, em geral,na forma levógira. A glicina é solúvel em água e não apresenta atividade óptica
Químicas: O grupo carboxílico (-COOH) na molécula confere ao aminoácido uma característica ácida e o grupo amino (-NH2) uma característica básica. Por isso, os aminoácidos apresentam um caráter anfótero, ou seja, reagem tanto com ácidos como com bases formando sais orgânicos.

Curva de titulação

É muito comum o uso da titulação através da adição ou remoção de prótons para se descobrir características dos compostos. Para aminoácidos essas características também são evidentes. Os valores dessa curva variam entre os aminoácidos. Porém esta tem algumas características em comum.
No início da curva observa-se que os grupos dos aminoácidos carboxilo e amino estão completamente protonados. Com a titulação o grupo carboxílico vai liberar prótons. Durante essa liberação é evidenciado um ponto onde a concentração desse doador de prótons é igual à concentração do íon dipolar desse aminoácido, ponto de inflexão, correspondente a pH igual a pK (medidor da tendência de ceder prótons) do grupo protonado que não está sendo titulado.
O ponto onde se observa o fim da liberação de prótons por parte do carboxilo é o ponto isoelétrico, pI, esse ponto possui um pH caraterístico, onde se observa todo o aminoácido como íon dipolar, ou seja, a carga total é igual a zero. Com a continuação da titulação, o próton do grupo NH3+ será liberado. Também se observa um ponto de inflexão nessa segunda parte da curva de titulação.

Outros aminoácidos

Ácido β-aminopropiônico (β-alanina): aminoácido natural componente do ácido pantotênico (vitamina do grupo B).

Aminoácidos ômega

Ácido ω-aminocaproico: aminoácido sintético usado na fabricação de fibras sintéticas e de plásticos.
"Aminoácidos" nocivos
Outro dos aminoácidos são os ácidos de aminas, que são pequenas particulas unimolécolares incutidas nas amendoas e amendoins, por tanto são altamente nutritivas para as unhas.

Referências

  1. University of Calgary, Department of Chemistry, Organic Chemistry On-Line Learning Center, Chapter 27: Amino Acids, Peptides and Proteins, Summary [em linha]
  2. University of Calgary, Department of Chemistry, Organic Chemistry On-Line Learning Center, Chapter 27: Amino Acids, Peptides and Proteins, α-Amino Acids [em linha]
  3. University of Calgary, Department of Chemistry, Organic Chemistry On-Line Learning Center, Chapter 27: Amino Acids, Peptides and Proteins, Terminology and Conventions for Peptides and Proteins [em linha]
  4. http://books.nap.edu/openbook.php?record_id=10490&page=593

Bibliografia

  • CAMPBELL, Mary K. Bioquímica. 3º edição, Artmed, 2006.

Ligações externas

Outros projetos Wikimedia também contêm material sobre este tema:
Wikilivros Livros e manuais no Wikilivros
Commons Imagens e media no Commons
Commons Categoria no Commons